The Trees and the Forest: Characterization of complex brain networks with minimum
نویسندگان
چکیده
In recent years there has been a shift in focus from the study of local, mostly task-related activation to the exploration of the organization and functioning of large-scale structural and functional complex brain networks. Progress in the interdisciplinary field of modern network science has introduced many new concepts, analytical tools and models which allow a systematic interpretation of multivariate data obtained from structural and functional MRI, EEG and MEG. However, progress in this field has been hampered by the absence of a simple, unbiased method to represent the essential features of brain networks, and to compare these across different conditions, behavioural states and neuropsychiatric/neurological diseases. One promising solution to this problem is to represent brain networks by a minimum spanning tree (MST), a unique acyclic subgraph that connects all nodes and maximizes a property of interest such as synchronization between brain areas. We explain how the global and local properties of an MST can be characterized. We then review early and more recent applications of the MST to EEG and MEG in epilepsy, development, schizophrenia, brain tumours, multiple sclerosis and Parkinson's disease, and show how MST characterization performs compared to more conventional graph analysis. Finally, we illustrate how MST characterization allows representation of observed brain networks in a space of all possible tree configurations and discuss how this may simplify the construction of simple generative models of normal and abnormal brain network organization.
منابع مشابه
The trees and the forest: Characterization of complex brain networks with minimum spanning trees.
In recent years there has been a shift in focus from the study of local, mostly task-related activation to the exploration of the organization and functioning of large-scale structural and functional complex brain networks. Progress in the interdisciplinary field of modern network science has introduced many new concepts, analytical tools and models which allow a systematic interpretation of mu...
متن کاملRelationship between Dead Trees with Soil Physico-chemical Properties and Earthworm in Mixed Broad-leaved Forest Stand (Case study: Sarcheshmeh Forest, Chaloos)
Dead trees protection, has a key role in structural and biogeochemical processes in forest ecosystems. Some aspects of dead tree dynamics have been carefully studied, but the kind and decay degree of dead trees and forest soil properties have not received enough attention. The aim of this research was to study the effect of a kind and decay degree of dead trees on soil mineral properties in the...
متن کاملA characterization of trees with equal Roman 2-domination and Roman domination numbers
Given a graph $G=(V,E)$ and a vertex $v in V$, by $N(v)$ we represent the open neighbourhood of $v$. Let $f:Vrightarrow {0,1,2}$ be a function on $G$. The weight of $f$ is $omega(f)=sum_{vin V}f(v)$ and let $V_i={vin V colon f(v)=i}$, for $i=0,1,2$. The function $f$ is said to bebegin{itemize}item a Roman ${2}$-dominating function, if for every vertex $vin V_0$, $sum_{uin N(v)}f(u)geq 2$. The R...
متن کاملComparison of some Soil Physico-Chemical and Microbial Characteristics in Relation to Oak Decline in Different Elevation Classes in Southern Zagros Forest
The decline of trees has been raised as one of the main problems in arid and semi-arid regions. Understanding the type and extent of the relationships among different environmental factors – e.g. soil characteristics as the basis for growth and development of plant species - and natural disturbances can be facilitated the ways of sustainable forest management and a useful tool for monitoring th...
متن کاملA characterization relating domination, semitotal domination and total Roman domination in trees
A total Roman dominating function on a graph $G$ is a function $f: V(G) rightarrow {0,1,2}$ such that for every vertex $vin V(G)$ with $f(v)=0$ there exists a vertex $uin V(G)$ adjacent to $v$ with $f(u)=2$, and the subgraph induced by the set ${xin V(G): f(x)geq 1}$ has no isolated vertices. The total Roman domination number of $G$, denoted $gamma_{tR}(G)$, is the minimum weight $omega(f)=sum_...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014